jueves, 3 de febrero de 2011

3. Codificación de datos

1.- Datos digitales, señales digitales

Una señal es digital si consiste en una serie de pulsos de tensión. Para datos digitales no hay más que codificar cada pulso como bit de datos. En una señal unipolar (tensión siempre del mismo signo) habrá que codificar un 0 como una tensión baja y un 1 como una tensión alta (o al revés). En una señal bipolar (positiva y negativa), se codifica un 1 como una tensión positiva y un 0 como negativa (o al revés). La razón de datos de una señal es la velocidad de transmisión expresada en bits por segundo, a la que se transmiten los datos. La razón de modulación es la velocidad con la que cambia el nivel de la señal, y depende del esquema de codificación elegido.

- Un aumento de la razón de datos aumentará la razón de error por bit.
- Un aumento de la relación señal-ruido (S/N) reduce la tasa de error por bit.
- Un aumento del ancho de banda permite un aumento en la razón de datos.

Para mejorar las prestaciones del sistema de transmisión, se debe utilizar un buen esquema de codificación, que establece una correspondencia entre los bits de los datos y los elementos de señal. Factores a tener en cuenta para utilizar un buen sistema de codificación:

1. Espectro de la señal: La ausencia de componentes de altas frecuencias, disminuye el ancho de banda. La presencia de componente continua en la señal obliga a mantener una conexión física directa (propensa a algunas interferencias). Se debe concentrar la energía de la señal en el centro de la banda para que las interferencias sean las menores posibles.
2. Sincronización: para separar un bit de otro, se puede utilizar una señal separada de reloj (lo cuál es muy costoso y lento) o bien que la propia señal porte la sincronización, lo cuál implica un sistema de codificación adecuado.
3. Detección de errores: es necesaria la detección de errores ya en la capa física.
4. Inmunidad al ruido e interferencias: hay códigos más robustos al ruido que otros.
5. Coste y complejidad: el coste aumenta con el aumento de la razón de elementos de señal.

- No retorno a cero (NRZ)
Es el esquema más sencillo ya que se codifica un nivel de tensión como un 1 y una ausencia de tensión como un 0 (o al revés).

2.- Código de representación de datos

El código binario es el sistema de representación de textos, o procesadores de instrucciones de ordenador utilizando el sistema binario (sistema numérico de dos dígitos, o bit: el "0" y el "1"). En informática y telecomunicaciones, el código binario se utiliza con variados métodos de codificación de datos, tales como cadenas de caracteres, o cadenas de bits. Estos métodos pueden ser de ancho fijo o ancho variable.
En un código binario de ancho fijo, cada letra, dígito, u otros símbolos, están representados por una cadena de bits de la misma longitud, como un número binario que, por lo general, aparece en las tablas en notación octal, decimal o hexadecimal.

3.- Datos Analógicos, señales analógicas

Una señal analógica es un tipo de señal generada por algún tipo de fenómeno electromagnético y que es representable por una función matemática continua en la que es variable su amplitud y periodo (representando un dato de información) en función del tiempo. Algunas magnitudes físicas comúnmente portadoras de una señal de este tipo son eléctricas como la intensidad, la tensión y la potencia, pero también pueden ser hidráulicas como la presión, térmicas como la temperatura, mecánicas, etc. La magnitud también puede ser cualquier objeto medible como los beneficios o pérdidas de un negocio.
En la naturaleza, el conjunto de señales que percibimos son analógicas, así la luz, el sonido, la energía etc, son señales que tienen una variación continua. Incluso la descomposición de la luz en el arco iris vemos como se realiza de una forma suave y continúa.

Una onda senoidal es una señal analógica de una sola frecuencia. Los voltajes de la voz y del video son señales analógicas que varían de acuerdo con el sonido o variaciones de la luz que corresponden a la información que se está transmitiendo.



4.- Datos digitales, señales analogicas (Modulación)

PWM (Digital)

La modulación por ancho de pulsos (también conocida como PWM, siglas en inglés de pulse-width modulation) de una señal o fuente de energía es una técnica en la que se modifica el ciclo de trabajo de una señal periódica (una senoidal o una cuadrada, por ejemplo), ya sea para transmitir información a través de un canal de comunicaciones o para controlar la cantidad de energía que se envía a una carga.

La principal desventaja que presentan los circuitos PWM es la posibilidad de que haya interferencias generadas por radiofrecuencia. Éstas pueden minimizarse ubicando el controlador cerca de la carga y realizando un filtrado de la fuente de alimentación.



PPM (Analoga)

Es un tipo de modulación en la cual una palabra de R bits es codificada por la transmisión de un único pulso que puede encontrarse en alguna de las 2M posiciones posibles. Si esto se repite cada X segundos, la tasa de transmisión es de R/X bits por segundo. Este tipo de modulación se usa principalmente en sistemas de comunicación óptica, donde tiende a haber poca o ningún tipo de interferencia por caminos múltiples.

La posición de cada pulso es elegida en función del pulso anterior, y de esta manera, el receptor sólo debe medir la diferencia de tiempo entre la llegada de los sucesivos pulsos. Con este tipo de modulación, un error en el reloj local se podría propagar sólo a la medición de dos pulsos adyacentes, en vez de a toda la transmisión.



PAM (Analoga)

Es la más sencilla de las modulaciones digitales. Consiste en cambiar la amplitud de una señal, de frecuencia fija, en función del símbolo a transmitir. Esto puede conseguirse con un amplificador deganancia variable o seleccionando la señal de un banco de osciladores.

Dichas amplitudes pueden ser reales o complejas. Si representamos las amplitudes en el plano complejo tenemos lo que se llaman constelaciones de señal (incluir dibujo). En función del número de símbolos o amplitudes posibles se llama a la modulación N-PAM. De la correcta elección de los puntos de la constelación (amplitudes) depende la inmunidad a ruido (distancia entre puntos) o la energía por bit (distancia al origen).

PCM (Analoga)

Es un procedimiento de modulación utilizado para transformar una señal analógica en una secuencia de bits(señal digital).

Una trama o stream PCM es una representación digital de una señal analógica en donde la magnitud de la onda análogica es tomada en intervalos uniformes (muestras), cada muestra puede tomar un conjunto finito de valores, los cuales se encuentra codificados.

En la figura se observa que una onda senoidal está siendo muestreada y cuantificada en PCM. Se toman las muestras a intervalos de tiempo regulares (mostrados como segmentos sobre el eje X). De cada muestra existen una serie de posibles valores (marcas sobre el eje Y). A través del proceso de muestreo la onda se transforma en código binario (representado por la altura de las barras grises), el cual puede ser fácilmente manipulado y almacenado.




PDM (Pulse During Modulation)

Es usado en la representación y conversión de señales analógicas al dominio digital (y a la inversa). A diferencia de la modulación PCM, la amplitud de una señal no se codifica asignándole unos valores de amplitud según el número de niveles de cuantificación, sino que en el PDM la amplitud se representa por densidad o nombre de impulsos en función del tiempo.

Una aplicación básica para a este tipo de modulación la encontramos en la tecnología SACD, desarrollada por Sony y Philips Electronics el año 1999.

Esta tecnología de audio de alta definición utiliza complejos sistemas de conversión, codificación, etc., tales como la Modulación Sigma-Delta y la codificación Direct Stream Digital (DSD) basados en PDM.

ASK (Amplitudes-shift beging)

Es una forma de modulación en la cual se representan los datos digitales como variaciones de amplitud de la onda portadora.

La amplitud de una señal portadora análoga varía conforme a la corriente de bit (modulando la señal), manteniendo la frecuencia y la fase constante. El nivel de amplitud puede ser usado para representar los valores binarios 0s y 1s. Podemos pensar en la señal portadora como un interruptor ON/OFF. En la señal modulada, el valor lógico 0 es representado por la ausencia de una portadora, así que da ON/OFF la operación de pulsación y de ahí el nombre dado.

Es lineal y sensible al ruido atmosférico, distorsiones, condiciones de propagación en rutas diferentes en PSTN, etc. Esto requiere la amplitud de banda excesiva y es por lo tanto un gasto de energía. Tanto los procesos de modulación ASK como los procesos de demodulación son relativamente baratos. La técnica ASK también es usada comúnmente para transmitir datos digitales sobre la fibra óptica. Para los transmisores LED, el valor binario 1 es representado por un pulso corto de luz y el valor binario 0 por la ausencia de luz. Los transmisores de láser normalmente tienen una corriente "de tendencia" fija que hace que el dispositivo emita un nivel bajo de luz. Este nivel bajo representa el valor 0, mientras una onda luminosa de amplitud más alta representa el valor binario 1.


FSK (Frequency-shift Keying)

Es una técnica de transmisión digital de información binaria (ceros y unos) utilizando dos frecuencias diferentes. La señal moduladora solo varía entre dos valores de tensión discretos formando un tren de pulsos donde un cero representa un "1" o "marca" y el otro representa el "0" o "espacio".

En la modulación digital, a la relación de cambio a la entrada del modulador se le llama bit-rate y tiene como unidad el bit por segundo (bps).

A la relación de cambio a la salida del modulador se le llama baud-rate. En esencia el baud-rate es la velocidad o cantidad de símbolos por segundo.



PSK (Phase-shift Keying)

Es una forma de modulación angular que consiste en hacer variar la fase de la portadora entre un número de valores discretos. La diferencia con la modulación de fase convencional (PM) es que mientras en ésta la variación de fase es continua, en función de la señal moduladora, en la PSK la señal moduladora es una señal digital y, por tanto, con un número de estados limitado.

Las modulaciones BPSK y QPSK son óptimas desde el punto de vista de protección frente a errores. Conceptualmente hablando, la diferencia entre distintos símbolos (asociados a cada fase) es máxima para la potencia y ancho de banda utilizados. No pasa lo mismo con 8-PSK, 16-PSK o superiores, para las que existen otras modulaciones más eficientes.

La gran ventaja de las modulaciones PSK es que la potencia de todos los símbolos es la misma, por lo que se simplifica el diseño de los amplificadores y etapas receptoras (reduciendo costes), dado que la potencia de la fuente es constante.

Existen 2 alternativas de modulación PSK: PSK convencional, donde se tienen en cuenta los desplazamientos de fase, y PSK diferencial, en la cual se consideran las diferencias entre un salto de fase y el anterior.




2. Espectro de señalización
 
1.-Espectro de ondas
 
El espectro de una señal es la medida de la distribución de aplitudes de cada frecuencia.

En palabras sencillas representa a cada frecuencua contenida en una señal y su intensidad. Por ejemplo para las ondas de radio de la tv; estas señales se componen de diversas frecuencias con distintas amplitudes (para enviar toda la información de imágenes y sonido) - el conjunto de estas sería el espectro de frecuencias de esa señal.
 
2.- Saltos y secuencias
SECUENCIA DIRECTA 

Un método de ampliar el espectro de una señal de datos modulada es modulando la señal por segunda ocasión utilizando una señal de espectro amplio en frecuencia. Esta segunda modulación adquiere generalmente una forma de modulación digital de fase, aunque la amplitud y fase, en modulación, de forma analógica es conceptualmente posible. La señal ampliadora (denominada c(t) y llamada código de expansión) es escogida de tal manera que tenga propiedades que faciliten la demodulación por un receptor conocido e intencionado. Estas propiedades harán una demodulación imposible por un receptor no intencionado.  

SISTEMAS DE SALTO DE FRECUENCIA (FRECUENCY HOPPING) 

En estos sistemas, la frecuencia portadora del transmisor cambia abruptamente, salta de acuerdo a una secuencia de código pseudoaleatorio. El receptor rastrea estos cambios y produce señales de frecuencia intermedia constantemente.

La dispersión del espectro se logra al dividir el ancho de banda disponible en un gran número de ranuras de frecuencia contiguas y luego utilizando una secuencia pseudoaletoria (generada en el transmisor), se cambia la frecuencia de la señal portadora constantemente entre dichas ranuras de frecuencia. De aquí que al transmitir sobre una multiplicidad de frecuencias, el rechazo de interferencias se debe a que se puede evitar transmitir, el mayor tiempo posible, sobre las frecuencias en donde se encuentran las señales interferentes. A los sistemas FH también se les conoce como Sistemas de Eludición. 

Los sistemas FH se clasifican de acuerdo a la cantidad de tiempo que permanecen en cada frecuencia discreta antes de saltar a la siguiente, se les divide en:


  • Salto en frecuencia lento. Son sistemas en los que se transmite uno o más bits de información en cada frecuencia.

  • Salto en frecuencia rápido. Son sistemas en los cuales en cada frecuencia se transmite parte de un bit y son necesarios varios saltos para transmitir el bit completo.




  • Referencias:

    1 comentario:

    1. Muchas gracias por la información brindada, esta excelente el blog y muy interesante

      ResponderEliminar