jueves, 3 de febrero de 2011

2. Transmisión de datos

1. Conceptos y terminologia

Los medios de transmisión pueden ser:
- Guiados si las ondas electromagnéticas van encaminadas a lo largo de un camino físico; no guiados si el medio es sin encauzar (aire, agua, etc...).
- Simplex si la señal es unidireccional; half-duplex si ambas estaciones pueden trasmitir pero no a la vez; full-duplex si ambas estaciones pueden transmitir a la vez.

Frecuencia, espectro y ancho de banda

Conceptos en el dominio temporal. Una señal, en el ámbito temporal, puede ser continua o discreta. Puede ser periódica o no periódica. Una señal es periódica si se repite en intervalos de tiempo fijos llamados periodo. La onda seno es la más conocida y utilizada de las señales periódicas. En el ámbito del tiempo, la onda seno se caracteriza por la amplitud, la frecuencia y la fase.
Transmisión de datos. Conceptos

La longitud de onda se define como el producto de la velocidad de propagación de la onda por su fase.

Conceptos del dominio de la frecuencia. En la práctica, una señal electromagnética está compuesta por muchas frecuencias. Si todas las frecuencias son múltiplos de una dada, esa frecuencia se llama frecuencia fundamental. El periodo (o inversa de la frecuencia) de la señal suma de componentes es el periodo de la frecuencia fundamental. Se puede demostrar que cualquier señal está constituida por diversas frecuencias de una señal seno.
El espectro de una señal es el conjunto de frecuencias que constituyen la señal. El ancho de banda es la anchura del espectro. Muchas señales tienen un ancho de banda infinito, pero la mayoría de la energía está concentrada en un ancho de banda pequeño. Si una señal tiene una componente de frecuencia 0, es una componente continua.

Relación entre la velocidad de transmisión y el ancho de banda. El medio de transmisión de las señales limita mucho las componentes de frecuencia a las que puede ir la señal, por lo que el medio sólo permite la transmisión de cierto ancho de banda.
En el caso de ondas cuadradas (binarias), estas se pueden simular con ondas senoidales en las que la señal sólo contenga múltiplos impares de la frecuencia fundamental. Cuanto más ancho de banda, más se asemeja la función seno (multifrecuencia) a la onda cuadrada. Pero generalmente es suficiente con las tres primeras componentes.

Se puede demostrar que al duplicar el ancho de banda, se duplica la velocidad de transmisión a la que puede ir la señal. Al considerar que el ancho de banda de una señal está concentrado sobre una frecuencia central, al aumentar esta, aumenta la velocidad potencial de transmitir la señal.
Pero al aumentar el ancho de banda, aumenta el coste de transmisión de la señal aunque disminuye la distorsión y la posibilidad de ocurrencia de errores.

2. Transmisión de señales análogas y digitales

Transmisión de Datos Analóga
 
La transmisión analógica que datos consiste en el envío de información en forma de ondas, a través de un medio de transmisión físico. Los datos se transmiten a través de una onda portadora: una onda simple cuyo único objetivo es transportar datos modificando una de sus características (amplitud, frecuencia o fase). Por este motivo, la transmisión analógica es generalmente denominada transmisión de modulación de la onda portadora. Se definen tres tipos de transmisión analógica, según cuál sea el parámetro de la onda portadora que varía:
  • Transmisión por modulación de la amplitud de la onda portadora
  • Transmisión a través de la modulación de frecuencia de la onda portadora
  • Transmisión por modulación de la fase de la onda portadora
Para transmitir esta señal, el DCTE (Equipo de Terminación de Circuito de Datos) debe combinar continuamente la señal que será transmitida y la onda portadora, de manera que la onda que transmitirá será una combinación de la onda portadora y la señal transmitida.



Transmisión de Datos Digital


La transmisión digital consiste en el envío de información a través de medios de comunicaciones físicos en forma de señales digitales. Por lo tanto, las señales analógicas deben ser digitalizadas antes de ser transmitidas.

Esta transformación de información binaria en una señal con dos estados se realiza a través de un DCE, también conocido como decodificador de la banda base: es el origen del nombre transmisión de la banda base que designa a la transmisión digital.



Ventajas
  • Inmune al ruido
  • Mejor procesamiento y multicanalización
  • Los datos digitales se guardan facilmente
  • Las señales digitales se renegeran no se amplifican
  • Las señales digitales son más fáciles de medir y evaluar
  • La evalución de desempeño es mas fácil

3. Elementos perturbadores en la transmisión

La transmisión de datos en una línea no ocurre sin pérdidas. Primero, el tiempo de transmisión no es inmediato, por lo que se requiere una cierta “sincronización” en la recepción de datos. Además, puede ocurrir una interferencia o una degradación de la señal.

Interferencia (a veces denominada ruido), se refiere a cualquier perturbación que modifica localmente la forma de la señal. Generalmente, hay tres tipos de ruido:

Ruido blanco es una perturbación uniforme de la señal; en otras palabras, le agrega una pequeña amplitud al efecto de la señal promedio, lo que resulta en una señal cero. Generalmente el ruido blanco se caracteriza por un índice denominado índice de señal/ruido, que traduce el porcentaje de amplitud del símbolo, con respecto al ruido (cuya unidad es el decibel). Debería ser lo más alto posible.

Ruidos impulsivos, son pequeños picos de intensidad que causan errores en la transmisión.
Señal de pérdida de línea o atenuación, representa la pérdida de señal a través de la disipación de la energía en la línea. La atenuación produce una señal de salida más débil que la señal de entrada y se caracteriza por la siguiente fórmula:
A = 20 log (Nivel de la señal de salida / Nivel de la señal de entrada). La atenuación es proporcional a la longitud del canal de transmisión y a la frecuencia de la señal.

La distorsión en la señal caracteriza la diferencia de fase entre la señal de entrada y la señal de salida.


4. Medios de transmisión

Por medio de transmisión, la aceptación amplia de la palabra, se entiende el material físico cuyas propiedades de tipo electrónico, mecánico, óptico, o de cualquier otro tipo se emplea para facilitar el transporte de información entre terminales distante geográficamente.
El medio de transmisión consiste en el elemento q conecta físicamente las estaciones de trabajo al servidor y los recursos de la red. Entre los diferentes mediosutilizados en las LANs se puede mencionar: el cable de par trenzado, el cable coaxial, la fibra óptica y el espectro electromagnético (en transmisiones inalámbricas).

Su uso depende del tipo de aplicación particular ya que cada medio tiene sus propias características de costo, facilidad de instalación, ancho de banda soportado y velocidades de transmisión máxima permitidas.




a) Medios guiados (terrestres)
Se conoce como medios guiados a aquellos que utilizan unos componentes físicos y sólidos para la transmisión de datos. También conocidos como medios de transmisión por cable.
  • Cable de pares / Par Trenzado:
Consiste en hilos de cobre aislados por una cubierta plástica y torzonada entre sí. Debido a que puede haber acoples entre pares, estos se trenza con pasos diferentes. La utilización del trenzado tiende a disminuir la interferencia electromagnética.

Se utilizan con velocidades inferiores al MHz (de aprox. 250 KHz). Se consiguen velocidades de hasta 16 Mbps. Con estos cables, se pueden transmitir señales analógicas o digitales.
Es un medio muy susceptible a ruido y a interferencias. Para evitar estos problemas se suele trenzar el cable con distintos pasos de torsión y se suele recubrir con una malla externa para evitar las interferencias externas.
En su forma más simple, un cable de par trenzado consta de dos hilos de cobre aislados y entrelazados. Hay dos tipos de cables de par trenzado: cable de par trenzado sin apantallar (UTP) y par trenzado apantallado (STP).

El trenzado elimina el ruido eléctrico de los pares adyacentes y de otras fuentes como motores, relés y transformadores.

Componentes del cable de par trenzado
Aunque hayamos definido el cable de par trenzado por el número de hilos y su posibilidad de transmitir datos, son necesarios una serie de componentes adicionales para completar su instalación. Necesita unos conectores y otro hardware para asegurar una correcta instalación.
 
Cable Coaxial:

Consiste en un cable conductor interno (cilíndrico) separado de otro cable conductor externo por anillos aislantes o por un aislante macizo. Todo esto se recubre por otra capa aislante que es la funda del cable.
Este cable, aunque es más caro que el par trenzado, se puede utilizar a más larga distancia, con velocidades de transmisión superiores, menos interferencias y permite conectar más estaciones. Se suele utilizar para televisión, telefonía a larga distancia, redes de área local, conexión de periféricos a corta distancia, etc...Se utiliza para transmitir señales analógicas o digitales. Sus inconvenientes principales son: atenuación, ruido térmico, ruido de intermodulación.
Para señales analógicas se necesita un amplificador cada pocos kilómetros y para señales digitales un repetidor cada kilómetro.

El núcleo de un cable coaxial transporta señales electrónicas que forman los datos. Este núcleo puede ser sólido o de hilos. Si el núcleo es sólido, normalmente es de cobre.

Tipos de cable coaxial

Hay dos tipos de cable coaxial:
  • Cable fino (Thinnet).
  • Cable grueso (Thicknet).
El tipo de cable coaxial más apropiado depende de 1as necesidades de la red en particular.
Consideraciones sobre el cable coaxial
En la actualidad es difícil que tenga que tomar una decisión sobre cable coaxial, no obstante, considere las siguientes características del cable coaxial.
Utilice el cable coaxial si necesita un medio que pueda:
  • Transmitir voz, vídeo y datos.
  • Transmitir datos a distancias mayores de lo que es posible con un cableado menos caro
  • Ofrecer una tecnología familiar con una seguridad de los datos aceptable.
Fibra Óptica:

 Es el medio de transmisión mas novedoso dentro de los guiados y su uso se esta masificando en todo el mundo reemplazando el par trenzado y el cable coaxial en casi todo los campos. En estos días lo podemos encontrar en la televisión por cable y la telefonía.
En este medio los datos se transmiten mediante una haz confinado de naturaleza óptica, de ahí su nombre, es mucho más caro y difícil de manejar pero sus ventajas sobre los otros medios lo convierten muchas veces en una muy buena elección al momento de observar rendimiento y calidad de transmisión.
Físicamente un cable de fibra óptica esta constituido por un núcleo formado por una o varias fibras o hebras muy finas de cristal o plástico; un revestimiento de cristal o plástico con propiedades ópticas diferentes a las del núcleo, cada fibra viene rodeada de su propio revestimiento y una cubierta plástica para protegerla de humedades y el entorno.

El cable de fibra óptica es apropiado para transmitir datos a velocidades muy altas y con grandes capacidades debido a la carencia de atenuación de la señal y a su pureza.

El cable de fibra óptica no se utiliza si:
  • Tiene un presupuesto limitado.
  • No tiene el suficiente conocimiento para instalar y conectar los dispositivos de forma apropiada.
Se trata de un medio muy flexible y muy fino que conduce energía de naturaleza óptica. Su forma es cilíndrica con tres secciones radiales: núcleo, revestimiento y cubierta .El núcleo está formado por una o varias fibras muy finas de cristal o plástico. Cada fibra está rodeada por su propio revestimiento que es un cristal o plástico con diferentes propiedades ópticas distintas a las del núcleo. Alrededor de este conglomerado está la cubierta (constituida de material plástico o similar) que se encarga de aislar el contenido de aplastamientos, abrasiones, humedad, etc...
Permite un gran número de canales y velocidades muy altas, superiores al GHz.


b)Transmisiones inalambricas (Aereas)

Han tenido gran acogida al ser un buen medio de cubrir grandes distancias y hacia cualquier dirección, su mayor logro se dio desde la conquista espacial a través de los satélitesy su tecnología no para de cambiar. De manera general podemos definir las siguientes características de este tipo de medios: a transmisión y recepción se realiza por medio de antenas, las cuales deben estar alineadas cuando la transmisión es direccional, o si es omnidireccional la señal se propaga en todas las direcciones.

Líneas Aéreas / Microondas:

Líneas aéreas, se trata del medio más sencillo y antiguo q consiste en la utilización de hilos de cobre o aluminio recubierto de cobre, mediante los que se configuran circuitoscompuestos por un par de cables. Se han heredado las líneas ya existentes en telegrafía y telefonía aunque en la actualidad sólo se utilizan algunas zonas rurales donde no existe ningún tipo de líneas.

Microondas, en un sistema de microondas se usa el espacio aéreo como medio físico de transmisión. La información se transmite en forma digital a través de ondas de radio de muy corta longitud (unos pocos centímetros). Pueden direccionarse múltiples canales a múltiples estaciones dentro de un enlace dado, o pueden establecer enlaces punto a punto. Las estaciones consisten en una antena tipo plato y de circuitos que interconectan la antena con la terminal del usuario.

Tiene como características que su ancho de banda varia entre 300 a 3.000 Mhz, aunque con algunos canales de banda superior, entre 3´5 Ghz y 26 Ghz. Es usado como enlace entre una empresa y un centro que funcione como centro de conmutación del operador, o como un enlace entre redes Lan.

Microondas terrestres: Suelen utilizarse antenas parabólicas. Para conexionas a larga distancia, se utilizan conexiones intermedias punto a punto entre antenas parabólicas.
Se suelen utilizar en sustitución del cable coaxial o las fibras ópticas ya que se necesitan menos repetidores y amplificadores, aunque se necesitan antenas alineadas. Se usan para transmisión de televisión y voz.
La principal causa de pérdidas es la atenuación debido a que las pérdidas aumentan con el cuadrado de la distancia (con cable coaxial y par trenzado son logarítmicas). La atenuación aumenta con las lluvias.
Las interferencias es otro inconveniente de las microondas ya que al proliferar estos sistemas, pude haber más solapamientos de señales.

Microondas por satélite: El satélite recibe las señales y las amplifica o retransmite en la dirección adecuada .Para mantener la alineación del satélite con los receptores y emisores de la tierra, el satélite debe ser geoestacionario.
Se suele utilizar este sistema para:
  • Difusión de televisión.
  • Transmisión telefónica a larga distancia.
  • Redes privadas.
Las diferencias entre las ondas de radio y las microondas son:
  • Las microondas son unidireccionales y las ondas de radio omnidireccionales.
  • Las microondas son más sensibles a la atenuación producida por la lluvia.
  • En las ondas de radio, al poder reflejarse estas ondas en el mar u otros objetos, pueden aparecer múltiples señales "hermanas".


Referencias:

No hay comentarios:

Publicar un comentario en la entrada